
EECS470 Final Project Report
Dhanvi Bharadwaj
dhanvib@umich.edu

Eric D'Urso
edurso@umich.edu

Luke Nelson
lukenels@umich.edu

Chase Ruskin
cruskin@umich.edu

Anthony Varkey
avarkey@umich.edu

Kyle Wang
kylewang@umich.edu

Abstract—This report presents the design, implementation,
and analysis of an N-way superscalar out-of-order processor
based on the RISC-V instruction set architecture. The proces-
sor incorporates advanced features such as a G-Share branch
predictor, return address stack, instruction prefetching, vari-
ably-associative data cache, non-blocking instruction and data
caches, and a victim cache. The design follows the MIPS
R10K architecture, utilizing key components like the reorder
buffer, reservation station, and physical register file to enable in-
struction-level parallelism. We developed comprehensive testing
suites, including a GUI debugger and coverage-driven unit tests,
to ensure functional correctness. Performance analysis led to
optimizations in branch misprediction handling and instruction
fetching throughput. The final configuration achieved an average
CPI of 2.46 for C programs with a clock period of 16.0 ns,
resulting in approximately 25.4 MIPS. Our project demonstrates
the complexities of modern processor design and highlights the
importance of effective project management and communication
in large-scale hardware development efforts.

I. Introduction

EECS470 uses a subset of the RISC-V instruction set archi-
tecture (ISA) to design microprocessors. To support this ISA,
we designed an N-way superscalar out-of-order processor,
implemented it using SystemVerilog, and synthesized it using
Synopsys Design Compiler. We present our design, analysis,
and testing of this major design experience.
A. Summary of Advanced Features

In addition to basic functionality of the ISA and the intro-
duction of instruction level parallelism, the processor also
implements several advanced features to enhance performance
and the development process. These advanced features include
the following:

• N-way superscalarness
• A functional GUI Debugger compatible with the entire

processor, the processors submodules, and the Project 3
processor

• Advanced Branch Predictor (G-Share)
• A Return Address Stack
• Instruction Prefetching
• A Variably-Associative Data Cache
• Non-Blocking Instruction and Data Caches
• A Victim Cache
• Coverage-Driven Unit Tests

Details as to the design and implementation of these advanced
features will be described in the subsequent subsections.

II. Design and Implementation

This section will examine the design and implementation of
our processor. The core components are based on the MIPS
R10K architecture. The development of this processor was
split into four main components: (1) the development of
the memory interface, instruction, and data caches, (2) the
development of the in-order fetch and dispatch stage, (3) the
development of the out-of-order core, and (4) the development
of the retire stage. All of these components are discussed in
depth in this section.
A. Memory

Fig. 1: The top-level structure for how the CPU handles memory transactions.
We implement a 32 byte direct-mapped instruction cache with a 4 byte victim
cache and a 32 byte 8-way associative data cache. The processor’s fetch stage
is responsible for gathering instructions to process, the out-of-order stages
are responsible for processing instructions, and the retire stage is responsible
for maintaining precise in-order state of processed instructions.

The constraints for the provided memory module were that:
(1) all memory operations would have a uniform, 100ns
latency and (2) all memory operations would execute in
the order that they were dispatched. With this in mind, we
designed our memory arbiter, data cache, instruction cache,
and victim cache under the following specifications.

a) Memory Arbiter:
The memory arbiter connects the instruction and data

caches with the memory interface. The caches are designed
to assert their outputs until they are accepted by memory, and
the memory arbiter controls this by always prioritizing data
cache requests over instruction cache requests. This policy was

mailto:dhanvib@umich.edu
mailto:edurso@umich.edu
mailto:lukenels@umich.edu
mailto:cruskin@umich.edu
mailto:avarkey@umich.edu
mailto:kylewang@umich.edu


implemented under the assumption that instruction prefetching
allows the instruction buffer to run-ahead, thus its current
requests are not as urgent as those from the data cache. The
memory arbiter does not track any information about what
request or transaction tag came from which cache. Since
memory transaction tags are unique, transactions returned
from memory broadcast to both the data cache and instruction
cache. Caches will ignore any data and tags that did not
originate from them.

b) Data Cache:
The data cache is a non-blocking multi-ported write-back

cache that leverages a configurable number of Missed Status
Handling Registers (MSHRs) to interface with memory for
cache misses. The data cache can have a configurable number
of load ports and one write port. The data cache is variably
associative, and uses a Not Most Recently Used (NMRU)
eviction policy for non-direct-mapped associativity configu-
rations. The data cache is designed to return hits to a load/
store unit on the same cycle they are requested, and misses
as soon as they become available in the cache. The MSHRs
and the store queue share the write port to the data cache,
and the store queue has priority over the MSHRs in case
the data is in the cache and can hit in the same cycle. Once
the store queue is not requesting the write port, a MSHR
that has its data back from memory can write its data into
the cache and broadcast the returned data back to the load/
store unit. We chose to implement the write-back policy for
writing store requests back to memory instead of the write-
through policy in order to reduce contention of the memory
bus during program execution. Once a halt instruction (wfi)
is retired and all currently allocated MSHRs have completed,
the data cache enters a memory synchronization state which
iterates through each line in the cache and sends a memory
store command for each data block that is both valid and dirty.
Once all blocks have been checked, the data cache emits the
true stop signal for the processor, indicating the cache has
been flushed.

c) Instruction Cache:
Similar to the data cache, the instruction cache is a

non-blocking multi-ported cache that implements MSHRs to
resolve cache misses. We chose a non-blocking cache for the
instruction cache to increase the throughput of instructions
being returned to the instruction buffer in the fetch stage.
The instruction cache is direct-mapped, and cache hits are
returned to the instruction buffer on the same cycle they are
requested. The first miss detected is sent to the victim cache
and can still be acknowledged as a hit if found. Evicted blocks
from the instruction cache are placed in the victim cache,
and misses in both the victim and instruction cache trigger a
memory request and allocates a MSHR to await the returned
instructions from memory.

d) Victim Cache:
The victim cache is a one way, fully associative cache that

can hold four blocks evicted from the instruction cache. In the
event of a miss in the instruction cache, the victim cache is

examined before allocating a MSHR. If the requested data is in
the victim cache, it is swapped back into the instruction cache
and a memory transaction is not issued. However, an MSHR
will have priority over the write port into the instruction cache
if it has its data back from memory, and the hit block in the
victim cache will have to be dropped. This design choice was
implemented due to its simplicity and the assumption that the
MSHR data is more of a priority over the current hit data
because it was requested many cycles ago due to previously
being a miss.
B. Fetch

Fig.  2: Depicts the design of the fetch stage, and contains the interfaces
and datapaths between submodules of the fetch stage: the prefetch controller,
the instruction predecoder, the instruction buffer, and the branch predictor.
The primary role of the fetch stage is to read instructions from memory and
provide them in program order to the later defined out-of-order core.

The fetch unit was created to be responsible for providing
instructions to the out-of-order core (Section II.C) in program
order, with the caveat of branch speculation, at the highest
rate possible. Since the out-of-order core had the ability to
take in N instructions per cycle, the goal of the fetch unit was
to provide N instructions per cycle. It is also necessary that
they are provided in program order (outside of branches which
have the ability to be rolled back if predicted incorrectly by the
out-of-order core) for correct execution order of instructions.

The primary bottleneck of the datapath of the fetch unit was
communicating with memory, as we were limited to a 2-word
memory interface with significant memory latency. To better
handle this constraining interface, the fetch stage pipelines
memory accesses and caches the results before pulling them
into an instruction buffer. This was done in the form of the
above instruction cache (Section II.A.c). However, the fetch
unit was able to provide even more utilities in order to limit
the effects of this bottleneck.

a) Instruction Buffer:
The first improvement implemented was an instruction

buffer. The goal of the instruction buffer was to provide a
buffer where instructions could be queued in cases where the
out-of-order core was unable to accept instructions, such as
stalling due to a structural hazard in one of its units. The
length of the instruction buffer was made customizable via a
SystemVerilog parameter defining its depth.



The instruction buffer was implemented with a FIFO (first-
in, first-out) buffer, which could be filled with N instructions
requested from the instruction cache per cycle. The method
of requesting is detailed in prefetching (Section II.B.b). The
output of the buffer was also N instructions wide, as when
the out-of-order core ‘enabled’ input from the fetch stage, the
fetch stage would provide up to N ‘ready-to-go’ instructions to
the out-of-order core for execution. In order to keep track of
which instructions were ‘ready-to-go’, we used three pointers
to define entries in the buffer: head, branch prediction head,
and tail. Each entry in the buffer was also marked with two
booleans of metadata, telling whether they contain a valid
instruction (i.e. have they been returned by the I-Cache yet),
and whether they have been run through the branch predictor,
and contained the instruction, address, and place holders for
branch prediction results. An instruction can only be given to
the out-of-order core when all instructions prior to it are valid
and have been ‘eaten’ by the branch predictor. The reason
instructions are fed through the branch predictor is to make
sure that if it is a branch, the instructions that follow it follow
the predicted target of that branch. The purpose of the branch
prediction head is to mark which instructions have been fed
through the branch predictor and thus have been solidified as
speculated program order and are ready to be handed off to
the out-of-order core for computation.

b) Prefetching:
Prefetching is how we defined our logic for speculatively

filling the instruction buffer as much as possible in order to
feed the out-of-order core a steady diet of instructions. Our
prefetcher had the ability to make N requests to the instruction
cache at a time, and allocated a slot in the instruction buffer
at the tail pointer (when space was available) on both a
hit and a miss. If hit, the instruction was marked as valid,
indicating it had been received from the instruction cache. If
a miss, the fetch logic would watch the asynchronous memory
returns from the instruction cache and mark it as valid when
it returned.

The prefetcher worked by keeping track of a speculative PC
and attempting to fetch as far ahead of the real PC in program
order as possible in order to preemptively fill the instruction
buffer. To do this, it would start at a baseline of the real PC:
at reset this was given as 0x0, and on branch misprediction
results from the out-of-order core would be the correct branch
target of the misprediction. From here, it would move ahead
(assuming branches not taken) and fill the instruction buffer
until the instructions being fed through the branch predictor
resulted in a predicted branch taken. When the branch was
taken, it would change the speculative PC to the branch target,
and also move the tail pointer in the instruction buffer to
invalidate all instructions fetched that went down the wrong
speculative path.

c) Branch Prediction:
In order to perform accurate branch prediction, we needed

to utilize a robust branch predictor which could predict
branches with a high rate of accuracy. We chose to implement
a G-Share predictor. When making predictions, G-Share effi-

ciently accounts for local branch history and global branch
history by hashing together part of the current branch PC and
a global history register via an XOR. Our implementation of
G-Share allows for the global history register width to be cus-
tomized via a parameter. We implemented both a version of
G-Share that only updates the Global History Register (GHR)
on retire, and one that speculatively updates the GHR on every
cycle assuming the predicted direction of any current branch
is correct. For the speculative version, we keep a counter of
the number of not-resolved predictions. In this version, the
true length of the GHR is determined by a width parameter
supplied plus the number of total entries in the Reorder Buffer
(ROB), which accounts for the maximum in-flight branches.
For recovery from mispredictions, we simply shift the GHR
right by the value of the counter to guarantee that we flush
all the speculative updates following the misprediction.

d) Branch Target Buffer:
The branch target buffer (BTB) allows us to reliably predict

the destination address of branches by storing a mapping of
part of the PC of the branch instruction to its destination once
discovered, which can then be reused in future encounters
of that branch. Our branch target buffer is a direct-mapped
cache indexed by a customizable number of lower bits from
the branch PC. We chose 10 bits for our final configuration
to provide a reasonable size for the cache while minimizing
the chance of collisions between different branches due to the
number of possible entries. Our BTB has one read port and
one write port to support predicting entering new destination
information for one retired branch per cycle.

e) Return Address Stack:
We implemented a return address stack (RAS) to improve

performance on predicting function return destinations to go
beyond the BTB’s performance. Our return address stack has
a customizable depth. We used predecoding to determine
whether a given instruction was a function call (jal, jalr
where destination register is not logical register zero) or a
function return (jalr where destination register is logical
register zero). All function calls are pushed onto the return
address stack, and whenever a function return is detected the
topmost entry of the RAS is popped from the stack and its
address plus four is used as the predicted target address of
the branch. We add four to proceed to the next instruction
following the original function call.

All of these units together comprised the fetch unit, or fetch
stage, of our processor. They aided the processor to avoid the
memory bottleneck by loading an instruction buffer to avoid
wasted time when the out-of-order core stalls, prefetching
instructions into the instruction cache in order to save time
waiting on cache misses, and have accurate branch prediction
to eliminate unnecessary rollbacks on a branch misprediction.



C. Out-Of-Order Core

Fig. 3: The Out-Of-Order (OOO) core is responsible for issuing, executing,
and completing instructions out of order. The inputs to the OOO core from
the fetch stage are in-order, and the outputs from the OOO core to the retire
stage are in-order. The OOO core involves data structures and techniques
such as register renaming to eliminate write-after-write and write-after-read
dependencies. A stall is sent back to the fetch stage if any data structure
(ROB, RS, free list, map table) have a structural hazard.

The main priority of the out-of-order core is to avoid false
hazards, commonly known as write-after-read (WAR) errors,
write-after-write (WAW) errors, and structural hazards, which
force the processor’s pipeline to stall.

Our pipeline follows the R10K processor implementation
popularized by the famous MIPS R10K processor designed
in the 1990s. This design utilizes register renaming to rename
logical registers (for example, the 32 provided by RISC V-32)
into a customizable amount of physical registers.

This process happens by renaming logical registers to phys-
ical registers ‘on the fly’ in such a way to avoid some of the
false hazards described above. For example, in a write-after-
write hazard, if two instructions will write data into logical
register r1, then we can rename the r1 in the first instruction
to p1, and in the second instruction to p2, effectively allowing
us to simultaneously calculate and hold the results to both
instructions, even though the compiler or programmer named
them the same logical register.

This approach, however, requires comprehensive tracking
of state, which is defined by these modules below: the map
table (Section II.C.b), the free list (Section II.C.c), and the
physical register file (Section II.C.f).

Another main tenet is the ability to maintain ‘precise state’
so that if a program halts or gets interrupted, its state can
be recovered precisely. This involves all instructions coming
both into and out of the out-of-order core in order, as their
state must be retired in order to maintain precise state. This
is handled by the Reorder Buffer (Section II.C.a).

a) Reorder Buffer:
The Reorder Buffer (ROB) is responsible for tracking in-

structions throughout their lifetime in the out-of-order (OOO)
core and retiring them after they have completed. The ROB
organizes instructions in rows, where each row has at least 1
valid instruction and up to N valid instructions. If there is a
cycle where no valid instructions are dispatched, a ROB row
is not allocated. We greedily allocate a ROB row if at least
1 valid instruction is dispatched in order to push instructions
through the backend as soon as possible. After being entered
into the ROB, the ROB listens to the Common Data Bus
(CDB) for any physical tags of in-flight instructions and marks
them as complete as they come back on the CDB. The ROB
retires a row when all instructions in the row are complete.
Instructions that are invalid in a ROB row are marked as
complete upon being entered into the ROB since they were
not assigned a physical tag and will never have a response
broadcasted on the CDB.

The ROB handles branch mispredictions by entering a roll-
back state upon detection. If a row that is ready to retire has
a branch misprediction, as heard from the CDB, it will output
a rollback detected signal to the other modules of the OOO
core and begin rollback. First, the ROB retires the instructions
in the row of the branch misprediction up to the mispredicted
branch instruction, and then enters rollback. During rollback,
it reverses the read address of the ROB to use the tail, and
outputs the instructions in reverse order of their allocation.
This reversal essentially “unwinds” the processor’s state cycle
by cycle until the ROB is empty. After the rollback sequence,
the map table and free list are restored to the architectural
precise state of the retired mispredicted branch instruction.
The ROB lowers its stall signal once rollback is complete and
the OOO core can begin to accept more instructions from
the fetch stage. We chose to implement the rollback strategy
due to its simplicity in comparison to other branch recovery
strategies such as checkpointing.

b) Map Table:
The Map Table is responsible for dynamic register renam-

ing and mapping logical registers to physical registers. It
processes up to N instructions per cycle sequentially, ensuring
instruction order is preserved even as multiple mapping are
updated in the same cycle. Internally it maintains two mem-
ories: a tag table and a ready bit table.

For each incoming instruction, the tag table provides the
current mapping of the logical register to a physical register,
while the ready bit table determines if the corresponding
physical register has been marked ready. Writes to the tag table
update the physical register mapping for a logical register,
and the ready bit is cleared to signal that the new register is
not yet ready, unless a rollback state overrides this behavior.
Additionally logical register zero is hardwired to physical
register zero and is always marked ready.

To handle dependencies within a cycle, instructions are
processed sequentially, ensuring that updates made by earlier
instructions within the same cycle are immediately visible
to later instructions. This approach avoids hazards caused by



inner-cycle dependencies, as later instructions always see the
most up-to-date state of the tag and ready bit tables. During
updates, the CDB (common data bus) is monitored to set
ready bits for completed physical registers. If the logical reg-
ister tag has been overwritten by a newer instruction before the
CDB broadcast, the ready bit remains unchanged, preventing
stale updates.

To support branch misprediction recovery, the Map Table
can rollback its state. On rollback the OOO core sends the
previous physical register tags to overwrite current entries.
The Map Table assumes that the incoming tags to write will
be in reverse order on cycles of rollback to ensure that any
inner-cycle dependencies are undone correctly. This rollback
mechanism simplifies state recovery while maintaining cor-
rectness of logical-to-physical register mappings.

c) Free List:
The Free List is responsible for managing the availability

of physical registers in the processor. It operates in a circular
FIFO queue that racks free registers, allowing up to N registers
to be freed or allocated in a single cycle. Its basic logic is the
same as ROB with a head and a tail pointer pointing to the
first and the last available physical register. The FIFO queue
also employs internal forwarding, allowing registers freed
and requested in the same cycle to be immediately visible
for allocation. Additionally, physical register 0 is statically
reserved and excluded from the allocation process.

In the dispatch phase the Free List provides up to N oldest
available physical register to support register renaming for
new instructions. These registers are selected in order of
availability to maintain efficiency. If fewer than the requested
number of registers are available, a structural hazard is sig-
naled, stalling the pipeline. During the retire phase, physical
registers that are no longer needed are returned to the Free
List. These registers correspond to those previously mapped
by instructions now retiring from the Reorder Buffer (ROB).
Once freed, they are marked as available and added back to
the pool of free registers.

d) Function Units:
The function units (FUs) are a set of modules that perform

operations on the data read from the physical register file.
With more FUs than lines on the CDB, a priority selector
selects among FUs that have valid data to broadcast their
tag on the CDB and write results into the physical register
file. Each FU has the same set of control signals to tell the
Reservation Station (RS) when it can accept more data and
tell the CDB when it has data ready to complete.

Our FUs consist of integer arithmetic logic units (ALUs),
conditional branch units (CBU), a load/store unit (LSU), and a
pipelined integer multiplier unit (MULT). Our MULT imple-
mentation requires 8 cycles to execute multiply instructions,
and the LSU implementation requires a variable number of
cycles for loads dependent on if the requested data is a hit or
miss in the data cache.

The ALU computes arithmetic and logical operations. The
CBU handles unconditional and conditional branch results
and target addresses. The MULT handles multiplication op-

erations. The LSU handles computing the load and store
addresses as well as handles load requests to the data cache.
Computed store addresses take a single cycle and are sent to
the store queue to update the state of the store instruction’s
entry in the queue.

e) Reservation Station:
The reservation station (RS) is the key component which

allows us to exploit instruction-level parallelism.

Fig. 4: The high-level implementation of the Reservation Station. The inputs
to the Reservation station include instructions and required metadata for
issuance to execution units, as well as updates from the common data bus and
other locations about the readiness of data operands.It outputs instructions
after data dependencies have resolved to execution units using a priority
selection scheme.

The reservation station takes in renamed instruction packets:
these packets contain instruction metadata (provided by the
decoder) as well as other information such as physical register
tags for both source and destination registers, the SQ head
position (for load dependencies), and branch predictions. The
RS has the ability to take in up to N instructions per cycle,
and has a parameterizable size. The memory of the RS is
implemented using a priority selector to find the first N empty
locations in the buffer, and slot in the respective incoming
instruction packet.

The RS is also in control of what instructions are issued
to the function units. This is also implemented with priority
selectors. Each function unit type has its own priority selector
which looks at the memory buffer and selects up to the number
of that type of function unit of instructions to issue. This
priority selector also takes into account a stall signal returned
from each function unit, giving information about whether it
is available to receive a new instruction on the next cycle. The
RS can only issue instructions for which all source operands
are available (and ready). To do this, the RS listens to the
CDB (and the Store Queue for loads) and marks metadata
bits in its instruction packets to store whether source operands
are available or not, and then, on egress from the RS, the
instruction packet essentially ‘visits’ the physical register file
on the way and receives the data based on the physical register
addresses it requires.



f) Physical Register File:
The Physical Register File (PRF) stores the actual data

for instructions that write data to registers using the physical
register tag as the index into its memory. Since our design is
based on the MIPS R10K architecture, the PRF is the single
source of truth for a program’s register data. It has twice the
number of read ports for the FUs to read their source operand
data and N write ports for N completed instructions to write
their results back into the PRF.

g) Store Queue:
The store queue maintains precise program state by han-

dling memory store operations while interacting with key
components of the out-of-order core. Our store queue design is
implemented as a circular FIFO structure, supporting multiple
store dispatches and retirements per cycle. During dispatch
the store queue allocates an entry for each incoming store
instruction, where it awaits address and data resolution. The
Load/Store Unit (LSU) updated the store queue entry once
the address and data had been computed, marking the store
as complete. Stores remain in the store queue until they are
ready for retirement to ensure the speculative state does not
affect program correctness.

Our store queue design does not include store-to-load
forwarding. Instead, the store queue enforces strict ordering
by blocking all subsequent loads if there are unresolved older
stores. Specifically, the Reservation Station uses the head and
tail pointers of the store queue to assess potential hazards.
Loads are issued only when older stores advance to the head
pointer, signaling readiness for retirement and guaranteeing
memory consistency.

The Reorder Buffer coordinates store retirement by signal-
ing the store queue when a store is ready to commit. Upon
receiving the signal, the store queue issues the store to the
Data Cache in program order. Once the data cache acknowl-
edges the operation, the SQ clears the corresponding entry and
advances its head pointer. This interaction ensures stores are
committed in order and preserves precise program execution.
D. Retire

The retire stage finalizes instruction execution by committing
the results to architectural state. It consists of an Architectural
Map Table, which updates the mapping of logical registers to
physical registers as instructions retire in program order.

a) Architectural Map Table:
The architectural map table is an instantiation of the

same map table module used in the out-of-order core (Sec-
tion  II.C). This instantiation, however, only connects inputs
to this module and serves to maintain the precise state of the
program at a given time. The architectural map table only
connects write inputs and does not interact with ready bits
or rollback mechanisms. Its sole purpose is to update the
architectural state as instructions complete and retire, ensuring
the committed logical-to-physical register mapping is correct.
In the case of an interrupt, this would be used to recover the

state of the processor prior. By maintaining this committed
state independently of speculative execution, the retire stage
guarantees correct program behavior and state recovery.

III. Analysis

After integrating all of our units and verifying functional
correctness across all stages of the processor, we conducted
a detailed analysis of our pipeline performance and behavior.
We explored key metrics such as instruction throughput,
resource utilization, and stall behavior under various work-
loads. By evaluating each unit’s stalls and performance within
the entire system, we worked to target the critical areas of
our design to gain the most improvement within the time
remaining.
A. Minimizing Branch Misprediction Penalty

One bottleneck we identified in our processor was the stalling
of the OOO core due to branch misprediction. Since we used
rollback as our branch recovery strategy, the number of stall
cycles due to a branch misprediction is the number of ROB
rows to unwind. If the ROB allocates rows at a rate much
faster than instructions retire, then the processor will pay
a large penalty in stalling many cycles. If the ROB retires
instructions at a rate much faster than allocating rows, then
the processor will spend very few cycles in a given rollback
sequence. More mispredictions will also increase the number
of stalls, so it is also a priority to have an accurate branch
predictor.

We worked to minimize the branch misprediction penalty
of the ROB by detecting a misprediction from the CBUs as
soon as possible and triggering the OOO to immediately stop
accepting more instructions until the rollback was resolved.
By refusing more instructions into the OOO when a mispre-
diction is found (sooner than retired), we can spend fewer
cycles in rollback due to not allocating ROB rows between
the time the misprediction was computed and the time the
misprediction retired. Recall that the ROB retires instructions
one row at a time, so this architectural decision has increased
benefits for programs that have frequent dependencies between
near instructions and a processor that has large N superscalar
factor. Increasing N independently for a processor with high
utilization (many valid instructions in each row) can also
decrease the stall penalty for rollback because more instruc-
tions are unwound each cycle, however, this comes with the
associated costs of a wide N, such as longer dependent paths.



Fig. 5: The average CPI of the C programs for the branch misprediction found
early implementation compared to normal branch misprediction detected. A
lower CPI results from the early stall logic sent back to the frontend to stop
sending instructions to the ROB until the misprediction is recovered.

B. Increasing Utilization and Fetching Throughput

Another bottleneck we identified in our processor stemmed
from not being able to send instructions fast enough to the
OOO core to process. This resulted in low utilization despite
increasing N. As the ROB greedily allocates a row in a single
cycle if at least one instruction is valid, it is important to have
at least N instructions ready at every cycle to keep utilization
high inside the OOO core.

We realized that this was because we spent an inordinate
amount of time (in cycles) waiting for instructions to load
or be given to the fetch stage from the instruction cache
(Section  II.A.c). This was evidenced by determining the
throughput of our ROB and Instruction Buffer. We found that
across all C and Assembly program workloads, our average
ROB utilization (tracked by which entries in the ROB of size
16, N=2 were in flight) was 59.39%. Our instruction buffer
(size 16, N=2) was only utilized at an average rate of 23.64%
(tracked by how many valid instructions were waiting in the
instruction buffer and were predicted to be on the correct
control path). This bottleneck was caused by the fetch stage,
as we were unable to provide a steady diet of  N instructions
per cycle to the fetch stage.

To increase instruction fetching throughput, we designed
our instruction cache to be non-blocking, and allowed the
fetch stage to aggressively prefetch in an attempt to fill the
instruction buffer as fast as possible. By keeping the instruc-
tion buffer full, the OOO core can ideally accept N valid
instructions every cycle. On branch recovery, the instruction
buffer is cleared and the prefetcher begins prefetching from the
mispredicted branch’s corrected PC. By overlapping prefetch-
ing with rollback, we can hide the cost of the rollback when
the next set of instructions are missed in the instruction cache.
We redesigned the fetch stage to handle the instruction cache’s
non-blocking nature and prefetch ahead even if previous
instructions were missed. The instruction buffer has a head
pointer that dispatches instructions when they are valid and
stored in the buffer, which tries to dispatch up to N instruc-
tions that are valid and contiguous in relation to program
order.

These two improvements (non-blocking I-cache and instruc-
tion prefetching) allowed us to improve on both metrics (ROB

utilization and Instruction Buffer utilization). These metrics
prove that the Instruction Buffer both had enough instructions
to keep the Reorder Buffer and OOO core occupied. Here
is a bar chart showing the improvement of each of these
utilizations before and after each of the improvements.

Fig. 6: The ROB size utilization was tracked by percentage of occupied entries
in ROB for each C program. The non-blocking I-cache with the upgraded
prefetcher provided the ROB with the highest utilization in all programs,
eliminating unnecessary allocations of invalid instructions within a ROB row.

Fig. 7: The Instruction Buffer utilization tracked by % of occupied entries
in IB by C program. The data shows that the utilization improved following
changes to Instruction Cache and addition of a prefetcher, enabling higher
throughput to the out-of-order core.

We can tell that we improved drastically on both utilizations,
as well as CPI although undocumented due to lack of space.
To decipher the legend on the Instruction Buffer graph, we
show two utilization metrics on the Prefetching Instruction
Buffer, one describes the total allocated entries, and one
describes the amount of entries which were eventually handed
off to the OOO core (as a percentage of how many could
have been) (labeled as valid and ready). We still see that both
of these values are an improvement over the non-blocking
I-cache, showing that we improved the utilization of our out-
of-order core, and enabled the out-of-order core to provide
more instruction-level parallelism. However, the more accu-
rate measurement of our improvement is the % of Valid and
Ready, as this indicates how many instructions were available
to be given out to the out-of-order core. This is also supported
by the results of the Reorder Buffer utilization chart, as it
shows that we increased the utilization of our ROB from an
average of 59.39% to 67.69%. This allowed more instructions



to be in-flight at the same time, which is crucial to the out-
of-order processor.
C. Branch Prediction

We also noticed that despite increasing ROB utilization, we
were still severely limited by branch predictions, as significant
amounts of cycles were spent rolling back speculated instruc-
tions, meaning that our efforts filling the ROB to reach ILP
were getting mitigated.

As such, we designed multiple types of branch predictors
to see which would provide us the highest accuracy, and thus
allow our out-of-order core to work its magic most effectively.
As a point of reference, we also tested a simple saturating 2-
bit global counter predictor and predicting always taken and
always-not-taken.

Fig. 8: The prediction accuracy for the 4 different branch prediction schemes:
G-Share, bimodal, always not taken, and always taken. The average accuracy
for G-Share was 0.8057, while the average accuracy for bimodal was 0.8356.
The average accuracy for always not taken was 0.7199, and the average
accuracy for always taken was 0.3159.

The leading two predictors with the highest average accuracy
for our current implementation were G-Share at 0.8057 and
the global 2-bit bimodal branch predictor at 0.8356. Due to
time constraints, the branch prediction analysis was short-
lived, although future work can look to adjust the GHR width
and BTB size to improve prediction accuracy. The refactoring
of the fetch stage to improve instruction throughput also
could have undermined previously established assumptions
surrounding the branch predictor.

According to these analyses, our processor has a large
design-space exploration. Fine-tuning the many configurations
and parameters can either greatly improve our design or hinder
it with unscalable and poorly synthesizable datapaths. By
identifying and targeting the largest bottlenecks, we believe
we limited the critical issues in our design to maximize
performance gains and reduce pipeline hazards.

IV. Testing

To verify our processor, we incorporated varying degrees of
testing: unit tests, integration tests, and system tests.

At the module level, we created unit tests with coverage-
driven test generation to traverse the module’s state space
while minimizing the number of cycles required to reach
specific states. Unit tests leveraged Verb, a lightweight and

flexible UVM-inspired framework that allowed us to write our
models in Python and continue to simulate in our traditional
VCS testbench environment. The Python models are respon-
sible for generating the set of input test vectors as well as the
correct set of output test vectors. These test vectors are written
to files and read during simulation for the Device Under Test
(DUT) to drive its inputs and compare its outputs. This testing
methodology allowed us to identify and fix bugs sooner in
our development process, saving us time during integration.
To debug issues, we used waveform viewers and print line
debugging to gain more information about our designs and
eventually identify the root cause of any issue.

At the integration level, we created basic tests to check
dataflow and compatibility of interfaces across modules. Any
discrepancies or issues at this testing level forced us back to
the module level to update designs and unit tests to ensure
correctness was maintained with every change.

At the system level, we used the top level testbench for the
cpu to interface with memory in order to run assembly and C
test programs. To compare correctness, we also simulated an
already verified in-order processor and checked for differences
between the memory files (.out) and register write-back files
(.wb) of our processor. This form of testing introduced a
couple edge cases and uncaught bugs that we were able to
quickly resolve using previously stated debugging techniques.
A. Coverage Driven Unit Tests

When verifying hardware, not only is checking what the
design generated as outputs important, but also checking how
the design generated those outputs is just as important. This
tracking of knowledge in how the design reached a set of
outputs is known as coverage.

In order to maintain correctness on an individual module
level, we used coverage driven unit tests to formally verify
correctness on random inputs, and inputs characterized to
reach certain edge and corner cases. To do this, we use
the previously mentioned Verb testing framework. Verb con-
sists of a SystemVerilog package with predefined macros, a
Python package to implement common test functions, and
a command-line utility to check events and assert matching
outputs. This allowed us to write a correctness model in
a more human-readable manner and compare our expected
outputs to the received outputs of every DUT. This approach
enabled us to be confident in our testing because our tests
generated cases that covered the design’s state space while
automating correctness checking. While this methodology was
overall effective in reducing the number of bugs found in
the final system test, it was also more complex because we
had to really understand the design to model it using Python.
A discrepancy between the model and the DUT sometimes
indicated our model was functionally incorrect in comparison
to our hardware design. As an added benefit, this forced us
to more thoroughly understand the ideal implementation of
the tested module, in turn leading to a smoother integration
process.

We also utilized system tests to test the accuracy of our
program against the expected results of given C and Assembly
programs, as well as custom-designed programs expected to



test corner cases in our design. These verified the accuracy
of our processor as a whole, validating that we integrated
the individual modules, pipelines, and stages of our processor
accurately.
B. Tooling Suites

Throughout the course of the development of our processor,
we leveraged several different tools for testing, debugging,
and development to aid our design and verification process.
Some of these tools were made by our team during the design
process of our processor, and others were adapted and utilized
to meet our needs.

a) GUI Debugger:
The Verilog Visual Debugger (VVDB) is abstractly de-

signed to be able to display information in a number of
different configurations. The visual debugger reads both a
configuration file (in JSON format) and a value change dump
(VCD) file. The configuration file describes signals in the
VCD that need to be displayed by the debugger. The debugger
then uses its parsing unit to parse each signal, or struct
of signals into an entry. The entry objects hold the values
of the signal at different timestamps, as well as the current
timestamp. With this we are able to pause, step through cycle-
by-cycle, and graphically view components of the machine.
The display unit of the debugger then uses a sequence of these
entries to display the values specified in the configuration file
at a specific time. The display unit also contains the ability to
search through individual signals, and module instantiations.
Consequently, due to its modular nature, VVDB is capable
not only of displaying the signals of the processor described
in this report, but also of the EECS470 project 3 processor,
as well as all of the aforementioned modules defined in this
report. Our VVDB helped more than the provided debugger
because we were able to specifically search for signals and
view them in more detail. The VVDB GUI was also easier
to read and interact with than that of the provided debugger’s
interface embedded in the terminal. We selected a frontend
library that would make the implementation of a scalable
user interface relatively straightforward. VVDB is capable of
assisting in the development of any module with a clock signal
for which a valid configuration file can be produced.

Fig. 9: Depicts the Verilog Visual Debugger on implemented pipeline. The
main pane lists the signals tracked by the debugger, and the bottom pane
allows the signals to be searched by the module they are defined in. The
right pane displays the clock edge, and the search menu, and list of search
parameters. The top bar displays various information about the clock period,
cycle, and timestamp at the time the current signals occur.

Fig. 10: Depicts the Verilog Visual Debugger on the EECS470 project 3
pipeline. The stages of the pipeline are listed on the bottom pane, and
the remaining components of this configuration are identical to that of the
implemented pipeline in Fig. 9.

b) Orbit:
For a faster development experience, we used Orbit, a

SystemVerilog package manager. Orbit allowed us to script
our workflows for testing and benchmarking without having to
explicitly specify the list of source code dependencies for each
SystemVerilog module. By using Orbit, we were also able
to introduce new workflows outside of the course’s provided
VCS simulations, such as using ModelSim for simulation.
Having a docker image of a version of ModelSim alongside
Orbit allowed us to run regression tests on GitHub Actions
for each change to the codebase.

c) GitHub Actions:
We implemented GitHub Actions Continuous Integration

and Continuous Deployment (CI/CD) features in order to
automate our testing. We designed a test script which would
run both our coverage-driven unit tests described above for
each module as well as a bank of system tests, where we would
run C and assembly programs under different input parameters
and verify the write-back and memory output files matched
that of the already verified in-order processor. This strategy
ensured that when features were merged into the main branch



of our codebase, we could ensure full compatibility with our
current design as well as full accuracy and functionality of our
new features. Unfortunately, later in the process of developing
the processor, GitHub actions stopped support for some of
the dependencies of the ModelSim version we had access
to. Although the CI flow no longer works, it provided an
invaluable source of verification of the source modules earlier
in the development of the project.

V. Project Management

At the beginning of the project, we set forward-looking goals
for each of the milestones provided to us. They were as
follows:

• Milestone 1: Design all individual modules needed to
define memory-less R10K-style Out-of-order Core (i.e.
RS, ROB, Map Table(s), Free List, Function units)

• Milestone 2: Integrate all above units into an out-of-
order core and implement a simple fetching unit (predict
not taken, no prefetching) and retire unit (with only
architectural map table). Be able to run simple programs
such as mult_no_lsq and no_hazard (ignoring the
sw instruction).

• Milestone 3: Optimize fetching unit for branch predic-
tion, prefetching, instruction buffer, etc. Implement
memory modules (store queue, data-cache, instruction-
cache). Integrate all units back in and be able to run any
program (especially the ones given to us).

• Deadline: Optimize unit. Perform analysis on workloads
and processor modules to fine tune designs and parame-
ters for sizes of items in modules in order to have the
most advantageous processor.

We are happy to say that we were able to achieve all of
our individual group’s and required goals for these milestones
with the small caveat of achieving the milestone 3 goals 1-2
days after milestone 3 passed.

Some strategies of project management that we employed
were clear long-term and short-term goal setting, partner pro-
gramming and brainstorming, frequent inter-group communi-
cation, and common work times/work sessions. For setting
long-term goals, we first set long-term goals when we started
the project, and then adapted them to fit our current state
after each milestone meeting. Short-term goals were set and
changed more frequently, and weren’t always in an organized
meeting but often over other routes of communication such
as group chat or phone/video calls, but were designed to
make sure that we all were utilizing our time efficiently and
were not letting anyone fall behind. During the project, we
heavily implemented partner programming and working in
small groups over working individually. Anecdotally, compar-
ing modules done by group members individually vs in small
groups, we saw a much higher quality of work (in efficacy,
documentation, simplicity) and lower time taken to code it
up when working in a small group. We also believe that this
helped each of us know more about the processor as a whole
rather than our own individual parts. Lastly, we greatly valued
our inter-group communication between small groups, as we
often would be working on modules which would interface

with each other, and were able to do well at making sure
that we would line up both by brainstorming beforehand, and
checking during the implementation process.

Overall, we think that we did a very solid job at all aspects
of project management over this semester and are satisfied
with our performance as a team.

VI. Lessons Learned

One lesson we learned was that although one can have
confidence in modules individually using rigorous unit-testing
with Verb, this does not save a team from having to rewrite
interfaces after reconsidering functionality and resolve deeper
edge cases that were not considered when developing the
original testbenches. For example, when implementing our
branch prediction system, even though we had completed the
ROB significantly earlier, we still had to revise the interface
to support passing back the real target address to update
the BTB, which hadn’t been considered earlier. Such modi-
fications are inevitable, but hopefully as we become better
designers and architects we will write better interfaces and
testbenches.

Another lesson we learned was that unnecessary N-way
implementations could significantly harm our clock period
while not helping our CPI. For example, our G-Share was
originally supposed to predict up to N branches in one cycle
when we planned to have checkpoints that allowed for recov-
ery from multi-branch-speculation. However, even after we
abandoned this advanced feature we left this implementation
in for a while and it significantly raised our minimum clock
period due to the dependent for-loops involved.

A third lesson learned from this project is to empha-
size communication and keep the team’s goals consistently
aligned. Trying to manage a group of engineers and keep
everyone on the same page was found to be difficult due to
varying schedules, responsibilities, and technical experience.
It’s important to consistently relay new information and up-
dates throughout the design process and always ask questions
when design decisions and their tradeoffs are not very clear.
It’s also important to keep the bigger picture in mind when
introducing changes to module behavior, as one change can
affect the whole system and require major refactoring in other
parts of the system.


	Introduction
	Summary of Advanced Features

	Design and Implementation
	Memory
	Memory Arbiter
	Data Cache
	Instruction Cache
	Victim Cache

	Fetch
	Instruction Buffer
	Prefetching
	Branch Prediction
	Branch Target Buffer
	Return Address Stack

	Out-Of-Order Core
	Reorder Buffer
	Map Table
	Free List
	Function Units
	Reservation Station
	Physical Register File
	Store Queue

	Retire
	Architectural Map Table


	Analysis
	Minimizing Branch Misprediction Penalty
	Increasing Utilization and Fetching Throughput
	Branch Prediction

	Testing
	Coverage Driven Unit Tests
	Tooling Suites
	GUI Debugger
	Orbit
	GitHub Actions


	Project Management
	Lessons Learned

